AI - En introduktion till artificiell intelligens

I dag finns AI överallt på IT-området. Men hur fungerar det? Och hur kan du skapa en artificiell intelligens själv? Jag kommer att förklara allt du behöver veta för att komma igång med AI.

AI:s historia

Människor har funderat på att väcka saker till liv redan sedan urminnes tider. I och med datorernas uppfinning började idén om tänkande maskiner ta form.

1950 uppfann Alan Turing Turing-testet för att bedöma om en maskin är intelligent eller inte.

Termen artificiell intelligens användes för första gången 1956 vid en konferens på Dartmouth College.

En viktig uppfinning 1967 var algoritmen för närmaste granne, som är viktig för klassificering av objekt och mönsterigenkänning.

Den första autonoma vagnen utvecklades 1979. Den kallades Stanford Cart och kunde upptäcka och undvika väggar.

1985 uppfanns AI NETtalk. Den använde djup inlärning för att lära sig att prata.

AI:s historia
AI:s historia

År 1997 började AI verkligen ta fart. IBM:s superdator Deep Blue lyckades besegra den dåvarande världsmästaren i schack, Garry Kasparov.

NASA utvecklade de självkörande roverna Spirit och Opportunity, som körde autonomt på Mars yta 2004.

2011 slog en AI vid namn Watson en människa i spelprogrammet "Jeopary!".

Googles AlphaGo besegrade en proffsspelare i Go 2016. Go anses vara mycket mer komplext än schack och det är inte bara beräkningskraft som krävs för att lyckas.

År 2019 besegrade en AI till och med en professionell spelare i Starcraft II.

Idag finns AI överallt. Den löste problemet med proteinveckning och har till och med lärt sig att skapa konst eller skriva kod.

Viktiga termer

Här är en översikt över de viktigaste termerna inom AI.

Viktiga termer
Viktiga termer

Området AI är stort. Det omfattar saker som datorseende, behandling av naturligt språk, robotik och automatisering för att nämna några.

En viktig del av AI är maskininlärning. Det är en samling metoder och algoritmer som gör det möjligt för en dator att lära sig. Dessa metoder kan delas in i tre klasser:

Övervakad inlärning, oövervakad inlärning och förstärkningsinlärning.

Vid övervakad inlärning använder AI märkta data för att träna. Detta är inte fallet vid oövervakad inlärning. Förstärkningsinlärning är ett sätt att träna en virtuell agent. Agenten får en belöning när den gör det den ska göra. Detta uppmuntrar det önskade beteendet.

Neurala nätverk

En särskild metod för övervakad inlärning är djup inlärning. Djupinlärning är en process där man tränar ett så kallat neuralt nätverk. Nätverket består av otaliga noder (neuroner). De är sammankopplade med en specifik vikt och är staplade i lager med en så kallad bias.

För att beräkna värdet av en neuron utifrån den föregående neuronen multiplicerar du värdet av den föregående neuronen med vikten mellan neuronerna och lägger till bias.

Neuralt nätverk
Neuralt nätverk

För att träna nätverket måste du skriva in märkta träningsdata till inmatningslagret. Nätverket sprider data genom ett varierande antal dolda lager i enlighet med vikterna och biaserna.

Slutligen når uppgifterna ut till utgångsskiktet. Den utgående neuron med det högsta värdet är nätverkets förutsägelse. Beroende på om förutsägelsen är korrekt eller inte justerar AI alla individuella vikter och bias. På så sätt blir förutsägelserna mer och mer exakta, vilket innebär att nätverket lär sig.

Kolla in vår YouTube-video för att se ett exempel och träna din egen AI.

Skapa din första AI

AI-tillämpningar

Låt oss ta en titt på några tillämpningar av artificiell intelligens. Man skulle kunna hävda att artificiell intelligens kan göra vad som helst om man får tillräckligt med tid och datorkraft.

AI-tillämpningar
AI-tillämpningar

AI kan känna igen bilder och förstå mänskligt språk. Vi känner alla till saker som Alexa och Siri.

Om du vill bygga din egen AI, särskilt för hemautomation, datorseende eller behandling av naturligt språk, har vi något speciellt för dig.

Vår nya AIY Maker Kit innehåller allt du behöver för dina maskininlärningsprojekt.

Vårt nya AIY Maker Kit
Vårt nya AIY Maker Kit

Den kombinerade kraften hos Raspberry Pi 4 med 8 GB RAM och Google Coral USB Accelerator innebär att du kan bygga vad du vill. Tänk på en automatisk hundkorg eller din egen hemassistent. Du kan bygga ett lås med ansiktsdetektering eller en översättningsenhet i realtid.

Lämna en kommentar